

Critical Raw Materials: The global onslaught

2nd Annual CSOs Tailings Conference: “Reform and resistance in the shadow of a disaster”

Jamie Kneen

National Program Co-Lead
MiningWatch Canada
July 28, 2025

“Critical minerals” lists comparison

- ‘Have’ vs. ‘Want’
- Range of applications/uses
- Gold?

Minerals	North America							Asia and Australia			Europe		South America	
	USA	CAN	AB	ON	QC	SK	YK	Japan	South Korea	India	AUS	EU	UK	Brazil
Aluminum/bauxite	x	x	x						x		x	x	x	x
Antimony	x	x		x	x		x	x	x	x	x	x	x	x
Arsenic	x		x								x	x		
Barite/barium	x		x	x				x				x	x	x
Beryllium	x			x				x		x	x	x	x	
Bismuth	x	x	x	x	x		x	x	x	x	x	x	x	x
Borate/boron								x				x		
Cadmium					x					x				
Cesium	x	x		x	x			x						
Chromium/chromite	x	x	x	x		x	x	x	x		x			
Cobalt	x	x	x	x	x	x	x	x	x	x	x	x	x	x
Copper			x	x	x	x	x		x	x	x	x	x	x
Feldspar										x				
Fluorspar/fluorine	x	x		x		x	x	x			x	x		
Gallium	x	x	x	x	x	x	x	x	x	x	x	x	x	x
Germanium	x	x	x	x				x	x	x	x	x	x	
Gold												x		
Graphite/carbon	x	x	x	x	x	x		x	x	x	x	x	x	x
Hafnium	x		x						x		x	x	x	
Helium	x	x				x						x		
Indium	x	x	x	x	x		x		x	x	x	x	x	
Iron													x	
Lead									x					
Lithium	x	x	x	x	x	x	x	x	x	x	x	x	x	x
Magnesium	x	x	x	x	x	x	x	x	x	x	x	x	x	x
Manganese	x	x	x	x		x	x	x	x	x	x	x	x	x
Metallurgical coal											x			
Molybdenum		x		x		x	x	x	x	x	x	x	x	x
Nickel	x	x	x	x	x	x	x	x	x	x	x	x	x	x
Niobium	x	x	x	x	x	x	x	x	x	x	x	x	x	x
PGE	x	x	x	x	x	x	x	x	x	x	x	x	x	x
Phosphate/phosphorous	x		x						x		x	x	x	x
Potash		x	x				x			x			x	
REE	x	x	x	x	x	x	x	x	x	x	x	x	x	x
Rhenium									x		x	x		x
Rubidium	x							x						
Scandium	x	x	x	x	x	x				x	x	x	x	
Selenium				x					x	x	x	x		
Silica/silicon									x	x	x	x	x	x
Silver														
Strontium									x	x	x	x	x	
Tantalum	x	x	x	x	x	x	x	x	x	x	x	x	x	x
Tellurium	x	x		x	x		x	x	x	x	x	x	x	x
Tin	x	x	x	x	x	x	x	x	x	x	x	x	x	x
Titanium	x	x	x	x	x	x	x	x	x	x	x	x	x	x
Tungsten	x	x		x		x	x	x	x	x	x	x	x	x
Uranium	x	x	x	x		x	x	x	x	x	x	x	x	x
Vanadium	x	x	x	x	x		x	x	x	x	x	x	x	x
Zinc	x	x	x	x	x	x	x	x	x	x	x	x	x	x
Zirconium	x		x	x					x	x	x	x	x	

“Critical” Raw Materials

Critical to whom and for what?

Defined by advanced industrial countries – projected demand

1. Climate crisis (renewable energy transition – electricity generation, transmission, and storage – and electric vehicles)
2. War (weapons)
3. Tariffs (industrial production)

“EVs are here to save the car industry, not the planet.”

– Jason Slaughter, urban planning advocate

What is the offer for producing areas?

No change to extractive, colonial, capitalist model

- Economic opportunity – limited to raw materials and possibly primary processing
- Externalized costs: social, economic, environmental
- Volatile markets – boom-bust development
- Increased pressure on Indigenous and rural communities and environment – in Canada, US, Europe as well as globally – deregulation, extortion, militarization

“Electric cars are not for Africans.” – Tetteh Hormeku

How to respond?

Insist on stronger protections *before* new development is allowed

- Right to say 'no'
- Protect local livelihoods & environment – climate resilience
- Protect water sources
- Tailings and waste rock safety
- Ownership and revenue to cover full costs: depletion of natural resources, full remediation

Planetary Boundaries

(Stockholm Resilience Centre)

Plus human dimensions of
polycrisis: inequality, war,
migration, disease, etc.

Thank you!

miningwatch.ca

Jamie Kneen

jamie@miningwatch.ca